On a Nonlinear Integral Equation without Compactness

نویسندگان

  • F. ISAIA
  • G. Dinca
  • P. Jebelean
  • J. Mawhin
چکیده

The purpose of this paper is to obtain an existence result for the integral equation u (t) = φ (t, u (t)) + ∫ b a ψ (t, s, u (s)) ds, t ∈ [a, b] where φ : [a, b]×R → R and ψ : [a, b]× [a, b]×R → R are continuous functions which satisfy some special growth conditions. The main idea is to transform the integral equation into a fixed point problem for a condensing map T : C [a, b] → C [a, b]. The “a priori estimate method” (which is a consequence of the invariance under homotopy of the degree defined for α-condensing perturbations of the identity) is used in order to prove the existence of fixed points for T . Note that the assumptions on functions φ and ψ do not generally assure the compactness of operator T , therefore the Leray-Schauder degree cannot be used (see K. Deimling [2, Example 9.1, p. 69]).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Elliptic Perturbations for Hammerstein Equations with Singular Nonlinear Term

We consider a singular elliptic perturbation of a Hammerstein integral equation with singular nonlinear term at the origin. The compactness of the solutions to the perturbed problem and, hence, the existence of a positive solution for the integral equation are proved. Moreover, these results are applied to nonlinear singular homogeneous Dirichlet problems.

متن کامل

Numerical solution of a type of weakly singular nonlinear Volterra integral equation by Tau Method

‎In this paper‎, ‎a matrix based method is considered for the solution of a class of nonlinear Volterra integral equations with a kernel of the general form $s^{beta}(t-s)^{-alpha}G(y(s))$ based on the Tau method‎. ‎In this method‎, ‎a transformation of the independent variable is first introduced in order to obtain a new equation with smoother solution‎. ‎Error analysis of this method is also ...

متن کامل

On existence and uniqueness of solutions of a nonlinear Volterra-Fredholm integral equation

In this paper we investigate the existence and uniqueness for Volterra-Fredholm type integral equations and extension of this type of integral equations. The result is obtained by using the  coupled fixed point theorems in the framework of Banach space $ X=C([a,b],mathbb{R})$. Finally, we  give an example to illustrate the applications of our results.

متن کامل

N‎umerical ‎q‎uasilinearization scheme ‎for the integral equation form of the Blasius equation

‎The ‎method ‎of ‎quasilinearization ‎is ‎an ‎effective ‎tool ‎to ‎solve nonlinear ‎equations ‎when ‎some ‎conditions‎ on ‎the ‎nonlinear term ‎of ‎the ‎problem ‎are ‎satisfi‎‎ed. ‎W‎hen ‎the ‎conditions ‎hold, ‎applying ‎this ‎techniqu‎e ‎gives ‎two ‎sequences of ‎coupled ‎linear ‎equations‎ and ‎the ‎solutions ‎of ‎th‎ese ‎linear ‎equations ‎are quadratically ‎convergent ‎to ‎the ‎solution ‎o...

متن کامل

Random fixed point theorems with an application to a random nonlinear integral equation

In this paper, stochastic generalizations of some fixed point for operators satisfying random contractively generalized hybrid and some other contractive condition have been proved. We discuss also the existence of a solution to a nonlinear random integral equation in Banah spaces.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006